

Pryda Timber Connectors High Capacity Product Guide

A complete guide to the design, specification and installation of Pryda High Capacity Products

March 2014

Pryda High Capacity Product Guide

INDEX

ESSENTIAL NOTES- PRYDA PRODUCT GUIDES		CYCLONE STRAP	10
SELECTION GUIDE Quick, easy guide to selection of a suitable tie-down connector for timber frames	4	HOLD DOWN BRACKET	11
GENERAL NOTES	5	HEAVY DUTY TRUSS BOOT – TWIN FIN	13
HIGH CAPACITY TIE DOWN PLATE	6	HIGH WIND POST ANCHORS	15
CYCLONIC GRIPS	8	ANKA SCREWS & WASHERS	16

Product Information Updates

Information contained in this guide is subject to change.

The latest updates are available from www.pryda.com.au

SELECTION GUIDE

Tie Down Selector Guide								
Footing Tie Down	Wall Type	Roof Tie Down						
41 kN 36 kN 18 kN PSQ 2 x AS100 AS100 JD4 M12 M12 Page 14 page 15 page 15	Timber	9 kN CPAH JD4 nials page 10	15 kN QHS/2 nails page 9	20 kN 2 x CPAH JD4 screw/bolt page 10	30 kN 2 x QHS/2 JD4 nails page 9		54 kN HCTD JD4 M12 bolts Page 6	100 kN 2 x HCTD LVL M16 bolts Page 6
41 kN 36 kN 18 kN PSQ 2 x AS100 AS100 JD4 M12 M12 Page 14 page 15 page 15	Steel	9 kN CPAH JD4 nials page 11	15 kN PCG JD4 screws page 8	20 kN 2 x CPAH JD4 screw/bolt page 11	30 kN 2 x QHS/2 JD4 screws page 9	38 kN 2 x PCG/0 JD4 screws page 8	54 kN HCTD JD4 M12 Page 6	100 kN 2 x HCTD LVL M16 Page 6
	Block Work						54 kN HCTD JD4 M12 Page 6	100 kN 2 x HCTD LVL M16 Page 6
Truss to truss conne		12 kN TBHD75/T JD4 Bolts Page 12				50 kN TBHD75/T JD4 Botts+screws Page 12		
Legend (Typical)12.8 kNDenotes the maximum capacity of the Pryda bracketJD4Denotes the product code of the Pryda bracketJD4Denotes the timber joint strength to achieve capacityBoltsDenotes connectors used with Pryda bracketPage 9Denotes where full design information can be accessed								
Maximum "in service" capacity may to determined by load cases other than uplift. Refer to the full design data for each Pryda bracket to determine suitability for each specific application.If in doubt contact your local Pryda Design Office.								

Copyright www.pryda.com.au

GENERAL NOTES

Timber Joint Groups

Joint groups for some common timber are tabulated below. For further information refer Table H2.3 and H2.4 in AS1720.1:2010 – Australian Standards – Timber Structures Part 1: Design Methods.

Timbers	Strength Group		Joint Group	
	Dry	Green	Dry	Green
Oregon (Douglas fir) – America	SD5	S5	JD4	J4
Oregon from elsewhere	SD6	S6	JD5	J5
Radiata pine, heart-excluded	SD6	NA	JD4	NA
Radiata pine, heart-in	SD6	NA	JD5	NA
Slash pine	SD5	S5	JD3	J3
Ash type hardwoods from Vic, NSW highlands & Tas	SD4	S4	JD3	J3
Non-Ash type hardwoods from QId & NSW	SD3	S3	JD2	J2

Material Thickness

All material thicknesses referred to in this guide are the total coated thickness. This includes the zinc coating thickness, which is typically around 0.04mm for Z275 steel.

Fastener Specifications

Fixing into Timber:

Fasteners used in this guide for fixing into timber are typically:

- (i) 35 x 3.15 dia Pryda Timber Connector nails (eg: QHS9/2, CPAH etc)
- (ii) No.12x35 Type 17 screws -Pryda product code: WTF12-35. (eg: PCG, CPAH, TBHD75/T)
- (iii) M12 or M16 bolts (eg: PSQ and TBHD75/T)

Note on Machine Driven Nail Use

Where appropriate, 32x2.3 mm Duo-Fast C SHEG (ie: screw hardened electro galvanized) machine driven nails (code D40810) may be used instead of the specified 35x3.15 mm Pryda Timber Connector Nails to fix Pryda connectors provided that:

- 20% more nails are used (eg: 5 instead of 4, 4 instead of 3, 3 instead of 2) or alternatively, design capacities are to be reduced by 20% where the same number of nails are used
- machine driven nails are driven at nail spacings and edge distances similar to the hole pattern but these nails are not driven into the holes.

Fixing into Steel:

Fastener used in this guide for fixing into steel (eg: Pryda Cyclonic Grips into steel top plate) is the 12g screws (Buildex 12-14x20 Teks[®] screws using a nominal screw diameter (df) of 5.4 mm.

Tie-down Anchors:

Tie-down anchors include M12x100 RamsetTM AnchorscrewsTM and M12 or M16 tie-down rods with a suitable epoxy set chemical anchor.

Design Loads & Capacities

The tabulated capacities are for Category 1 joints. For all other joints, reduce design capacities by using the following factors:

- Category 2 Joints: 0.94
- Category 3 Joints: 0.88

Note: Category 1 joints are defined in Table 2.2 AS1720.1:2010 as structural joints for houses for which failure would be unlikely to affect an area of 25 sqm OR joints for secondary elements in structures other than houses.

Design Standards

The Design Uplift Capacities given in this guide include the appropriate Capacity Factors (ϕ). They have been calculated in accordance with AS1720.1:2010 (lateral capacities of nails, screws or bolts into timber) and AS/NZS 4600:2005 (steel screws in shear) and the steel capacities of the connectors have been established from test.

Durability

Pryda products having Z275 coating is suitable for most internal applications. Refer BCA for information on the extent of its suitability.

HIGH CAPACITY TIE-DOWN PLATES

Specifications

Pryda has two types of High Capacity Tie-Down Kits.

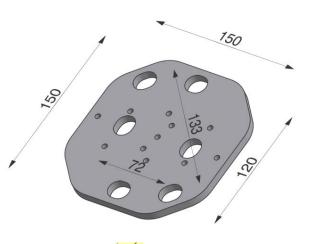
- (i) HCTD for tying down timber roof trusses to timber frames.
 - (ii) HCTD/WA for tying down timber roof trusses to steel frames.

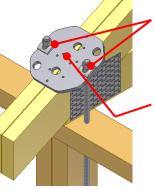
Contents per kit	HCTD	HCTD/WA	
Plate quantity	10	5	
Over washers	20	10	
Under washers	n/a	5	
M12 threaded rod	n/a	10	
M12 Nylock® nut	n/a	20	
Plate size	150 x 150 x 8mm		
Plate steel	G250-hot dip galvanised		

Design Capacities (I) Using Single Plate

Timber Grade (Truss chord)	Truss Laminates ⁽²⁾	Design Capacity ⁽⁴⁾ (kN)	Minimum Tie-Down Rod	
LVL10/13	Single	45.0	2/M12	
MGP 10/12/15	Multiple	54.0	2/M12	
LVL 14/18	Single	54.0	2/M12	
F17, F27	Multiple	54.0	2/M12	

(II) **Using Double Plates**

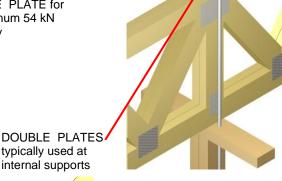

Timber Grade (Truss chord)	Truss Laminates (2)	Design Capacity ⁽⁴⁾ (kN)	Minimum Tie-Down Rod
LVL10/13	Single	45.0	2/M12
MGP 10/12/15	Multiple	90.0	2/M16
LVL 14/18	Single	75.0	2/M16
F17, F27	Multiple	100.0	2/M16


Notes:

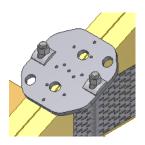
- This Table values are valid for both internal and 1. external tie-downs.
- 2. Single refers to 1/35 or 1/45 truss laminate. "Multiple" refers to any multiple laminate (2/35, 2/45 or 3/35). The HCTD plate should be orientated correctly to

accommodate single, double or triple laminated trusses. See illustration.

- 2/M16 rods may be replaced with high-strength 3. 2/M12 (8.8/s) rods.
- 4. The Design Capacities given here are valid only if the tie-down rods are adequately anchored to the ground. Anchorage details to be provided by others.



typically used at internal supports pitches to a maximum of . 30° Fix plate to truss using


3 nails per laminate

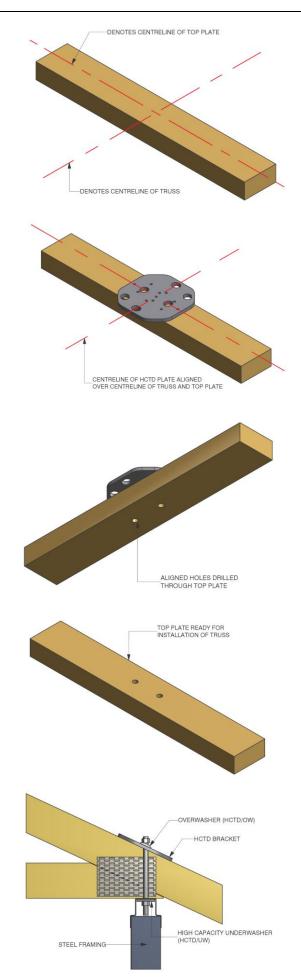
CURVED WASHERS to facilitate different roof

SINGLE PLATE for a maximum 54 kN capacity

DOUBLE LAMINATE TRUSS

TRIPLE LAMINATE TRUSS

SINGLE LAMINATE


TRUSS

Installation Instructions- Timber Frame:

- 1. Establish the tie down force to be restrained through Pryda Build or by other means.
- 2. Establish from the Design Capacity tables the required components and the appropriate configuration.
- 3. Establish centre line of truss over support.
- 4. Place the HCTD bracket over the top plate aligning both of its centrelines with the centre lines of the top plate and the truss.
- 5. Temporarily fix with several Pryda product nails.
- 6. Match drill 14/18mm diameter holes vertically down through the appropriate HCTD holes and down through the top plate. (This is to allow for the correct alignment of the tie-down rods with the HCTD bracket after installation of the truss).
- 7. Remove the HCTD bracket.
- 8. Install the truss.
- 9. Install tie down rods. Ensure there is sufficient length above the truss to be able to fix the HCTD and HCTD/OW.
- 10. Install HCTD bracket over the truss and rods.
- 11. HCTD/OW washer over each rod flat side down.
- 12. Prior to tightening nuts down onto the assembly, and with the tie-down ties vertically aligned fix four Pryda product (per laminate of truss) nails down through the small holes in the HCTD bracket into the top of the truss top chord.
- 13. Tighten the nuts.

Installation Instructions- Steel Frame:

- 1. Carry out items 1 through to 8 as noted for a timber frame. Refer above.
- 2. Use HCTD/WA kit to complete installation.
- 3. Position the Under Washer up under the stiffened top plate so that the appropriate holes are aligned.
- 4. Fix nut on one end of threaded rod.
- 5. Fit the free ends of the threaded rods up through the matching holes in the Under Washer and stiffened top plate.
- 6. Fit the HCTD bracket and over washers in that order over the threaded rods.
- 7. With the threaded rods vertically aligned fix four Pryda product (per laminate of truss) nails down through the small holes in the HCTD bracket into the top of the truss top chord.
- 8. Tighten the nuts.

CYCLONIC GRIPS (heavy duty)

Pryda Cyclonic Grips (heavy duty) are typically used in cyclonic areas for tying down roof trusses or other roof members to a steel frame having a heavy duty steel top plate. ("Stiffened top plate")

Specification

Size	See Dimensions on the right
Steel	G300-Z275 Galvanised steel
Product Code	PCG
Thickness (mm)	1.6
Packing	50 per carton

Design Capacities for a Pair of Cyclonic Grips with an Overstrap

Note: The wall plate is assumed to be adequate in its own right, to resist design loads given in the table.

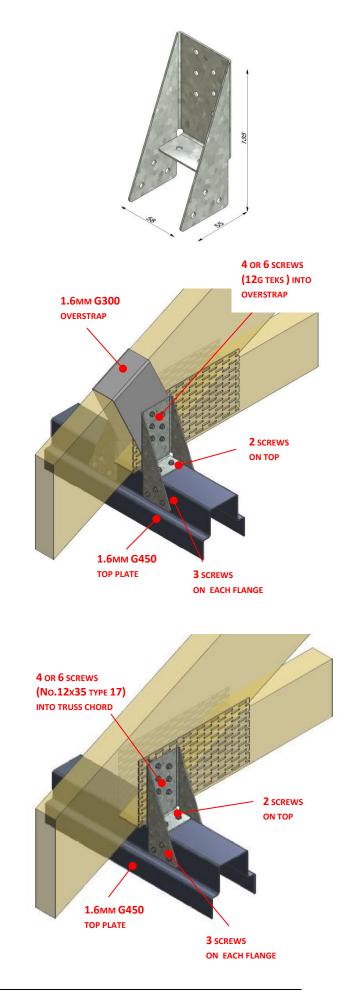
Fixing Requirement for Each Cyclonic Grip:

- 1.6mm G450 top plate: 8 /12g Teks screws
- 1.6mm G300 overstrap: 4 or 6 /12g Teks screws

Joint Group of truss Chord		Uplift Capacity (kN)		
	Truss Thickness	4 screws	6 screws	
		into Overstrap	into Overstrap	
JD5, JD4	1/35	22.0 ⁽¹⁾	22.0 ⁽¹⁾	
	2/35	25.0	38.0	
JD3	1/35	25.0	35.0 ⁽¹⁾	
	2/35	25.0	38.0	

Notes:

1. Capacities are limited by the crushing strength of the top chord against the overstrap. All other values are limited by screw capacity in steel.


Design Capacities for a Single Cyclonic Grip

Note: The capacities given in the table below may be multiplied by 2 when a pair of Cyclonic Grips are used. The wall plate is assumed to be adequate in its own right, to resist design loads

Fixing Requirement for Each Cyclonic Grip:

1.6mm G450 top plate:	8 /12g Teks screws
Truss Chord:	4 or 6 /No.12x35 Type 17 screws

Joint Group of Truss Chord	Uplift Capacity (kN)		
	4 screws into Truss Chord	6 screws into Truss Chord	
JD5	7.0	10.5	
JD4	10.0	15.0	
JD3	14.0	20.0	

PRYDA TIMBER CONNECTORS Connectors & Tie-down Connectors Guide Copyright: © Pryda (Aust) Pty Ltd - ABN 38 006 630 137 - 1995 to 2003 - July 2003

CYCLONIC GRIPS

Pryda Cyclonic Grips (PCG90) are added to the range for use in 90mm wide framing (steel or timber), for tying down roof trusses or other roof members.

Specification

Size	119x55x92 (PCG90)
Steel	G300-Z275 Galvanised steel
Product Code	PCG90
Thickness (mm)	1.2
Packing	50 per carton

Design Capacities for a PAIR of Cyclonic Grips

Note: The wall plate is assumed to be adequate in its own right, to resist design loads given in the table.

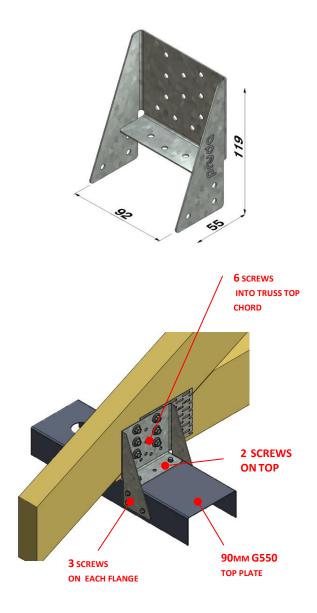
Fixing Requirement for Each Cyclonic Grip:

G550 top plate: 8 /M6 x 22 GX screws Truss chord: 6 /No.12x 35 Type 17 screws

Top Plate	Uplift Capacity (kN) for a PAIR		
thickness	JD5	JD4	JD3
0.75mm	19.8	19.8	19.8
0.95mm	21.6	30.6	31.4
1.15mm	21.6	30.6	35.0

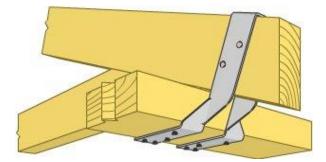
Design Capacities for a Single Cyclonic Grip

Note: The wall plate is assumed to be adequate in its own right, to resist design loads given below.


Fixing Requirement for Cyclonic Grip:

G550 top plate:	8 /M6 x 22 GX screws				
Truss chord:	6 /No.12x 35 Type 17 screws				

Top Plate	Uplift Capacity (kN) for a SINGLE					
thickness	JD5	JD4	JD3			
0.75mm	9.9	9.9	9.9			
0.95mm	10.8	14.0	14.0			
1.15mm	10.8	14.0	14.0			


Note: 10g x 16mm Teks screws may be used in lieu of the specified GX screws, provided the design capacities are reduced by 10%.

For Information on fixing into timber, refer Pryda Tie-Down Connectors Guide.

CYCLONE STRAPS – Heavy Duty

Pryda Heavy Duty Cyclone Straps are used primarily in cyclonic areas for tying down purlins to trusses or roof trusses or other roof members to the wall frame.

Features

- Quick and easy to install
- Sufficient capacity for many cyclonic area uses
- Can be "doubled up" for twice tie-down capacity
- Range of lengths to suit different nailing and capacity requirements
- Maximum design capacity determined from Pryda tests

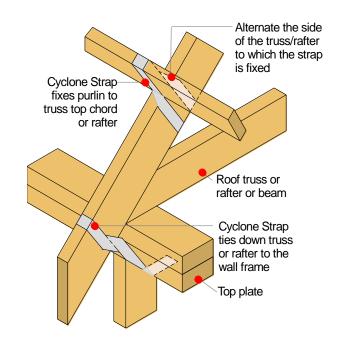
Specification

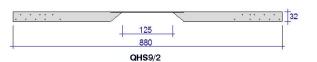
Size	See Dimensions on right
Steel	G300-Z275 Galvanised steel
Product Code	QHS9/2
Thickness (mm)	1.2
Packing No.	25
Per	Bundle
Length	880mm

Design Capacities

Limit State Design capacities for a single Pryda Cyclone Strap resisting wind uplift are as tabulated below.

	JD5	JD4	JD3	JD2
6 Nails/leg	8.8	10.5	14.8	15.0
Wrapped round	15.0	15.0	15.0	15.0


Capacities for straps that are Wrapped Round (see Note 3)


Notes:

- 1. Wind Uplift capacities are based on the Timber Structures Standard, AS1720.1:2010 adopting k1=1.14, for use in conjunction with AS/NZS1170:2002 loading code.
- 2. These design capacities apply to **Pryda Cyclone Straps** fixed at both ends with 35x3.15 mm galvanised **Pryda Timber Connector Nails** or equivalent.
- 3. When the strap is wrapped round the wall plate or other timber member and fixed with 4 nails per leg driven into the underside of the top plate, the capacity is limited by the steel. Tests have proven that bending the legs of **Cyclone Straps** around the timber increases the ultimate load the Strap is capable of carrying.
- 4. See General Notes.

Applications

Typical applications of Pryda Heavy Duty Cyclone Straps are shown in the diagram below

PRYDA HOLD-DOWN BRACKET

Pryda Hold-down Bracket can be used in a variety of applications in timber structures. Providing tie-down resistance for roof trusses or wall studs is the most common usage of this product.

Specification

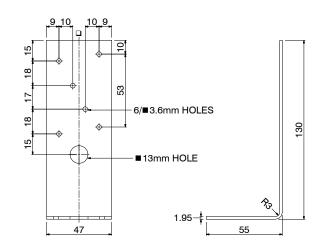
Size	130 x 50 x 47
Steel	G300-Z275
Product Code	МРСРАН
Thickness (mm)	2.0
Packing	75 per carton

Design Capacities FIXING INTO TIMBER FRAMING

The design capacities for **a pair of CPAH** brackets are tabulated below for use with both 35 x 3.15 Pryda Timber Connector nails and No.12 x 35 Type 17 screws. In order to achieve these capacities, a suitable tie-down connector is required. Note: These capacities are also suitable when CPAH is used as a tie-down bracket for wall studs

Uplift Capacities for 5/35 x 3.15 nails per bracket

Joint Group Of Truss Chord	Uplift Capacity (kN) (using a total of 10 nails into truss)
JD5	7.9
JD4	9.4
JD3	13.2


Uplift Capacities for 4/No. 12 x 35 Type 17 screws per bracket

Joint Group	Uplift Capacity (kN)
Of Truss Chord	(using a total of 8 screws into truss)
JD5	14.0
JD4	20.0
JD3	28.0

Tie-Down Anchors

Top Plate Tie-Down – Use a M12 tie-down rod with 40x40x5.0 washer anchored in to concrete using a suitable epoxy set chemical anchor. Alternatively, 4/No.14 x 50 Type 17 screws per bracket may be used in some cases (preferably with pre-drilled holes), to achieve a capacity of 10.0 kN in JD4 material (a total of 20.0 kN for a pair of brackets). In this case, additional connectors are required to transfer tie-down forces from wall plate to foundation.

When CPAH is used to tie-down wall studs, adopt M12 x 150 RamsetTM AnchorscrewTM to anchor the bottom plates into concrete slab/footing to satisfy all of the above capacities. For a minimum edge distance of 45mm and embedment depth of 110mm in Grade 20 concrete, a tie-down capacity of approx 14.0 kN per anchor can be achieved. For the same conditions, used in internal walls, a capacity of 25.0 kN is achievable.

Design Capacities

The design capacities for CPAH brackets are tabulated below for use with both 10g and 12g screws. In order to achieve these capacities, a suitable tie-down anchor and a minimum 40x40x5.0mm galvanised washer is required.

opint capacities for rug screws									
Steel Grade & thickness	Design Uplift Capacity (kN) for 10g screws on wall stud								
of wall stud	2 screws	3 screws	4 screws	6 screws					
G300; 0.8mm	2.0	3.1	4.1	6.1					
G300; 1.0mm	, <u>-</u> .	4.4	5.8	8.8					
G550; 0.8mm	3.0	4.5	6.0	8.9					
G550; 1.0mm	4.7	7.1	9.4	14.2					

Uplift Capacities for 10g screws

Steel Grade & thickness	Design Uplift Capacity (kN) for 12g screws on wall stud								
of wall stud	2 3 4 6 screws screws screws								
G300; 0.8mm	2.2	3.2	4.3	6.5					
G300; 1.0mm	3.1	4.6	6.2	9.2					
G550; 0.8mm	3.1	4.7	6.3	9.4					
G550; 1.0mm	5.0	7.5	10.0	14.9					

Tie-Down Anchors

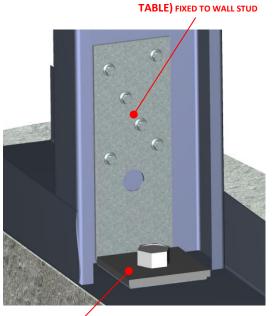
Ramset[™] Anchorscrew[™] may be used as a tie-down anchor into concrete slab/footing to satisfy all of the above capacities. Using M12x100 Anchorscrew, having a minimum edge distance of 45mm and embedment depth of 90mm in Grade 20 concrete, a tie-down capacity of approx 10.0 kN can be achieved.

Under the same condition, using M12x150 Anchorscrews with 140mm embedment, a 20 kN capacity could be achieved.

This anchorscrew (zinc plated) is available from Pryda (Product Code: AS12100H), packed in a carton of 50. A galvanized AnchorscrewTM is also available from RamsetTM for use in more corrosive environments. For more information visit **www.ramset.com.au**.

WITH 5 NAILS OR 4 SCREWS TO TRUSS/RAFTER

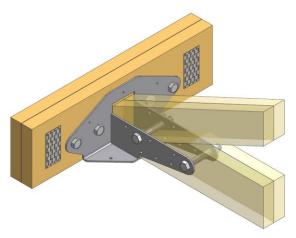
EACH BRACKET FIXED


M12 TIE-DOWN ROD WITH 40X40X5.0 WASHER CPAH IN APPLICATION

PRYDA HOLD-DOWN BRACKET

FIXING INTO STEEL FRAMING

2, 3, 4 OR 6 SCREWS AS REQUIRED (SEE



M12x100 ANCHOR SCREW WITH 40x40x5.0 WASHER

CPAH IN APPLICATION

HEAVY DUTY TRUSS BOOT – TWIN FIN

Steel Brackets for Heavy Roof Truss Connections

TBHD75/T Truss Boot – Twin Fin

Features

The long anti-rotation leg and heavy duty steel of the **Pryda Twin Fin Heavy Duty Truss Boot**, combined with the inherent high stiffness of the carried truss, prevents twisting of the bottom chord of the girder. Consequently, anti-rotation bars are not necessary. Useful variations of this product have:

The newly introduced **TBHD75/T** Truss Boot has further benefits which include:

- * Special shape to reduce weight, and rounded edges for easier handling
- * Improved bearing capacity for supported truss.
- * A unique slot in the back of the boot to eliminate the need to cut 6-10mm from the heel of the supported truss.
- * Additional screw fixings into supported trusses to improve uplift capacity, if required.
- * Nail holes in the back flange to allow the boot to be easily located on the girder truss prior to drilling for bolts.
- * Holes in the base to allow screw to hold any incoming angled member at ceiling level (such as a hip truss) in position. These holes are countersunk to allow flush finish if required.

Bolt Kits for Truss Boots

Fixi Tru was

Hot dipped galvanised Kits of bolts, nuts and washers are available to suit all bolt fixed boots. Details are:

Product Code	OBK816
To Suit	TBHD75/T
Packed	60
Bolts (mm)	6 /M16
Washers (square)	4 @ 63 x 5

Installation

Pryda Heavy Duty Truss Boots are installed with 6@ M16 or 5/8 inch bolts and with 63x4 mm square washers on all surfaces where the bolt head or nut bears directly on the timber. Anti-split **Claw nailplates** are to be installed on both faces of the girder and on both sides of the truss boot (see Application at left).

Screws used on the TBHD75/T Truss Boot are to be No. 12x35 mm Type 17 hex head screws (code WTF12-35).

Specification

Pryda Heavy Duty Truss Boots are made to the following specification:

Sizes:	See Dimensions following.
Steel:	Mild steel, hot dipped galvanized- thickness:
	- 4 mm for TBHD75/T
Product Codes:	TBHD75/T
Packing	1

Dimensions

DESIGN CAPACITIES for the TBHD75/T Heavy Duty Truss Boot – Twin Fin

(To be used with Double 35mm supported trusses only)

18

Table; JD5

Girder Truss bottom Chord using JD5 Joint Group (eg: MGP10 etc) with a minimum 130mm depth

			De	sign Capa	cities (kN)	for var	ying Load	d Cases ar	nd Support	ted Trus	s Joint G	roups	
Girder Truss Thickness	Supported	S	Supported Truss = JD5 Supported Truss = JD4							Supported Truss = JD3			
(mm)	Thickness	1.35G	1.2G+1.5Q	Wind	Uplift	1.35G					1.2G+1.5Q	Wind	Uplift
		(Dead Only)	(Dead+Live)	Bolts Only	Bolts+Screws	(Dead Only)	TB⊦	ID75/T fo	r Double	0	(Dead+Live)	Bolts Only	Bolts+Screws
35	2/35	9.8	13.2	15.6	19.5 ⁽³⁾	9.8	1 35mm Supported Truss			usses 13.2		19.5 ⁽³⁾	19.5 ⁽³⁾
45	2/35	12.6	17.0	15.6	25.2 ⁽³⁾	12.6	17.0	21.7	25.2 ⁽³⁾	12.6	17.0	25.2 ⁽³⁾	25.2 ⁽³⁾
2/35	2/35	17.6	23.8	15.6	32.6	17.6	23.8	21.7	35.2 ⁽³⁾	17.6	23.8	29.5	35.2 ⁽³⁾
3/35	2/35	21.2	28.7	15.6	32.6	21.2	28.7	21.7	42.4 ⁽³⁾	21.2	28.7	29.5	42.4 ⁽³⁾

Table: JD4

Girder Truss bottom Chord using JD4 Joint Group (eg: MGP12, MGP15, Hychord, E-beam etc) with a minimum

8

Girder Truss	Supported) for varying Load Cases and Support Supported Truss = JD4				ted Truss Joint Groups Supported Truss = JD3			
Thickness (mm)	Truss Thickness		1.2G+1.5Q				1.2G+1.5Q	Wind Uplift		1.35G	1.2G+1.5Q		
				Bolts Only	Bolts+Screws	(Dead Only)	(Dead+Live)	Bolts Only	Bolts+Screws	(Dead Only)	(Dead+Live)	Bolts Only	Bolts+Screws
35	2/35	13.6	18.3	15.6	27.2 ⁽³⁾	13.6	18.3	21.7	27.2 ⁽³⁾	13.6	18.3	27.2 ⁽³⁾	27.2 ⁽³⁾
45	2/35	17.4	23.6	15.6	32.6	17.4	23.6	21.7	34.9 ⁽³⁾	17.4	23.6	29.5	34.9 ⁽³⁾
2/35	2/35	24.4	33.0	15.6	32.6	24.4	33.0	21.7	45.7	24.4	33.0	29.5	48.8 ⁽³⁾
3/35	2/35	26.4	35.6	15.6	32.6	26.4	35.6	21.7	45.7	26.4	35.6	29.5	50.0 ⁽²⁾

Table: JD3

Girder Truss bottom Chord using JD3 Joint Group (eg: F17, E-beam+ etc) with a minimum 130mm depth.

Fixing into Supported

Truss: 2/M16

bolts + 6 screws on each arm (12

screws in total).

Girder Truss S Thickness (mm)	Supported Truss Thickness	Design Capacities (kN) for varying Load Cases and Supported Truss Joint Groups											
		Supported Truss = JD5				Supported Truss = JD4				Supported Truss = JD3			
		1.35G (Dead Only)	1.2G+1.5Q (Dead+Live)	Wind Uplift		1.35G 1	1.2G+1.5Q	Wind Uplift		1.35G	1.2G+1.5Q	Wind Uplift	
				Bolts Only	Bolts+Screws	(Dead Only)	(Dead+Live)	Bolts Only	Bolts+Screws	(Dead Only)	(Dead+Live)	Bolts Only	Bolts+Screws
35	2/35	18.5	24.9	15.6	32.6	18.5	24.9	21.7	36.9 ⁽³⁾	18.5	24.9	29.5	36.9 ⁽³⁾
45	2/35	23.7	32.0	15.6	32.6	23.7	32.0	21.7	45.7	23.7	32.0	29.5	47.4 ⁽³⁾
2/35	2/35	28.8	42.7	15.6	32.6	28.8	42.7	21.7	45.7	28.8	42.7	29.5	50.0 ⁽²⁾
3/35	2/35	28.8	42.7	15.6	32.6	28.8	42.7	21.7	45.7	28.8	42.7	29.5	50.0 ⁽²⁾

Notes:

1. 2/35 refers to 35mm thick double laminated truss and 3/35 refers to 35mm thick triple laminated truss.

2. The values (50 kN) with a superscript (2) refers to the capacities that are limited by steel strength in uplift.

The limiting steel value for "down-loading" is 50 kN.

3. Uplift Capacities – The values with a superscript (3) are limited by 4/M16 bolt fixings in girder truss. U.N.O in Notes 2 & 3, fixing into supported truss governs for UPLIFT.

4. The values in the table apply directly for Category 1 joints. Refer general Notes in page 5 for advice on how the values should be reduced for Category 2 and Category 3 joints.

5. The values related to **1.35G (Dead only)** load case should be checked against reactions arising from 1.35G load case. Similarly **1.2G+1.5Q (Dead + Roof Live)** capacities should be checked against factored reactions from 1.2G+1.5Q load case.

6. A 120mm deep bottom chord for girder trusses may be used when supporting concrete tile roofs in low wind areas (up to N2 wind class) where wind uplift is not critical.

7. It is important to use the specified washer (63 x 5 square) against the timber face to achieve full capacity of M16 bolts. Required only against Girder truss when using TBHD75/T.

8. This data sheet should be read in conjunction with relevant information given in the Hangers and Truss Boots Guide.

HIGH WIND POST ANCHORS

Pryda Post Anchors conform to AS3660.1 - 2000 Protection of Building from Termites. All joints are welded.

Advantages

Pryda Post Anchors are manufactured to a consistent quality. Advantages are:

- Compliance with building code requirements
- Hot dip galvanised coating after manufacture, to provide long term protection, suitable for severe external environments (as defined in the Building Code of Australia) which include sites within 1 km from the coast.
- Improved stability of the base with bolt holes close to the stem
- A large range of sizes to suit: (a) stirrup lengths from 300mm to 600mm (b) stirrup widths 90, 100, 125 & 150mm.

Installation

- 1. Use 12 mm (or 1/2") diameter galvanised bolts
- 2. Anchors and bolts embedded in wet concrete must extend at least 56 mm into the concrete to develop the uplift loads tabulated in this guide.
- 3. The distance from the top of the concrete to the underside of the post anchor saddle must not exceed 200 mm.

Bushfire Attack Resistance

Most Pryda Post Anchors meet the requirements of the Building Code of Australia (NCC 2013), Volume 2, which

requires a minimum of 75 mm clearance between the underside of the Post Anchor saddle and the ground surface or paving level.

Design Capacities – Wind Uplift

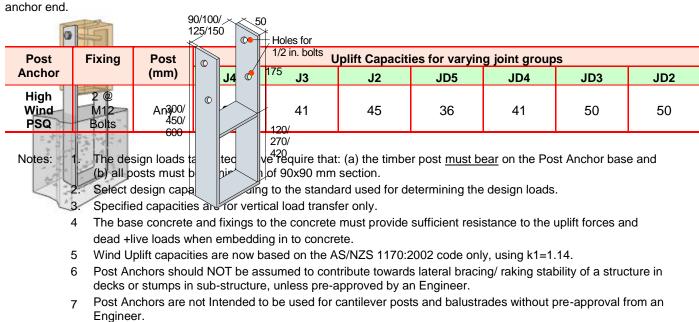
Limit State Design capacities (ΦN_i) for **Pryda Standard Post Anchors** resisting wind uplift loads are as follows:

Specification

The general specification for Pryda Post Anchors is:

Steel:	Hot dip galvanised					
Sizes:	To suit most widths of timber posts. A variety of stirrup lengths – see in the table below					
Application	Wet or dry concrete fixing.					

High Wind Post Anchors – Hot Dipped Galvanised 5mm Steel


Standard Product Code	Article & Size	Packed
PSQ30090/12	300x50mm-90mm post	6
PSQ300100/12	300x50mm-100mm post	6
PSQ45090/12	450x50mm-90mm post	6
PSQ450100/12	450x50mm-100mm post	6
PSQ60090/12	600x50mm-90mm post	6
PSQ600100/12	600x50mm-100mm post	6

PSQ600125/12	600x50mm-125mm post	6
PSQ600150/12	600x50mm-150mm post	6

Engineered for high wind areas, including tropical regions. The U shape base is designed for maximum hold-down in concrete.

See AS 1684 Part 3- Table 9.20 (j) reinforcing rod install over

75mm clearance

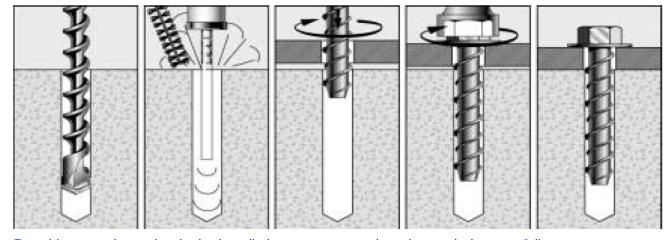
ANKASCREWTM

Also available in zinc and Galvanised

OVERVIEW

Ramset[™] released the Ankascrew[™] onto the Australian market in February 2000.

AnkascrewTM was originally marketed to the Do It Yourself, home handyperson segment, but because of its simplistic design and ease of use, it has become a popular masonry anchor to all trades.


The Ankascrew[™] is an innovative, self tapping screw-in anchor, used to fasten fixtures in the light to medium duty range and will fasten materials to concrete and other solid masonry as well as hollow concrete block, solid pressed brick and extended wire cut bricks with holes therein.

The RamsetTM AnkascrewTM is a self tapping anchor with multi-use capabilities where the thread cuts into the substrate for a positive and secure anchorage.

INSTALLATION

To achieve maximum loads the installation process needs to be carried out as follows:

To achieve maximum loads the installation process needs to be carried out as follows.

diameter and depth. Note:

Hole depth = Bolt length -

fixture thickness + overdrill

1. Drill a hole to the correct 2. Clean hole with a brush and remove debris with vacuum or hand pump.

3. Using a socket wrench, screw the ANKASCREW into the hole exerting a slight whilst tightening, unscrew downward pressure until the fastener one turn and "self-tapping" action starts.

4. Tighten the ANKASCREW. If resistance is experienced re-tighten, ensuring not to overtighten with excessive torque.

5. For optimum performance, a torque wrench should be utilized.

USES of Ankascrew[™]

Pallet racking

depth.

- Temporary safety barriers
- Conveyors pipe brackets
- Gate hinges into brickwork
- Temporary hand rails
- Bottom plates
- Used for fast and simple anchoring into solid concrete and masonry or hollow brick and block

Pryda Australia | A Division of ITW Australia Pty Ltd

153-187 Discovery Road, Dandenong South, Vic 3175 Offices in Melbourne, Sydney, Brisbane. Representatives in all States.

Website: www.pryda.com.au Email: info@prydaanz.com Tel: 1800 810 741