pryda

PRODUCT DATA SHEET

HIGH WIND POST ANCHOR (PSQ)

FEATURES AND BENEFITS

STRONG: The U shape base is designed for maximum hold-down in concrete.

VERSATILE: A large range of sizes to suit both post widths and base lengths.

STRONG: Hot dip galvanised coating after manufacture and made from 5mm steel.

SPECIFICATIONS

STEEL	G250
STIRRUP THICKNESS	5mm
CORROSION RESISTANCE	Hot dip galvanised (500 g/m²)
STEM SIZES	300, 450, 600
POST SIZES	75, 90, 100, 125, 150

FASTENERS REQUIRED

POST STIRRUP	M12.4.6 grade gelveniged box boad
TO TIMBER POST	bolts

Engineered for high wind areas, including tropical regions. The U shape base is designed for maximum hold-down in concrete.

See AS1684:2010 Part 3 - Table 9.20 (j) reinforcing rod install over anchor end.

To be installed central to post and deem to be "fit for purpose" by project Engineer / End user. Post anchors must be installed plumb.

AS1684, AS1720 & AS4055 COMPLIANT

- Designed in accordance with Pryda testing and relevant Australian standards
- Engineering computations in accordance with the relevant Australian standards

RANGE

PRODUCT CODE	MATERIAL	STEM SIZE (MM)	POST SIZE (MM)	BOLT HOLE SIZE	QUANTITY	
PSQ30075/12	G250 Steel, Hot Dip Galvanised (500 g/m²)	300	75	M12		
PSQ30090/12			90		6	
PSQ300100/12			100			
PSQ45075/12			75			
PSQ45090/12		450	90			
PSQ450100/12			100			
PSQ60090/12/4		600	90		4	
PSQ600100/12/4			100			
PSQ600125/12/4			125			
PSQ600150/12/4			150			
PSQ600100/12/4B	G250 Steel, Hot Dipped Galvanised (500 g/m²) + Black Powder Coating		100			

DESIGN CAPACITIES

Limit State Design capacities (ΦNj) for Pryda Standard Post Anchors resisting wind uplift loads are as follows:

HIGH WIND POS	T ANCHOR		UPLIF	T CAPACITIE	S FOR VARYI	NG JOINT GF	ROUPS	
FIXINGS	POST (MM)	J4	J3	J2	JD5	JD4	JD3	JD2
2 x M12 bolts	All	33	36	36	36	36	36	36

NOTES:

- 1. The maximum downward loading is limited to 25kN at a height of 75mm from base of post to foundation.
- 2. The design loads tabulated above require that:(a) the timber post must bear on the Post Anchor base and(b) all posts must be a minimum of 75 x 75mm section.
- 3. Select design capacity according to the standard used for determining the design loads.
- 4. Specified capacities are for concentric vertical load transfer only.
- 5. The base concrete and fixings to the concrete must provide sufficient resistance to the uplift forces and dead + live loads when embedding into concrete.
- 6. Wind uplift capacities are based on the AS/NZS 1170.2 wind code and AS4055:2012.
- 7. Post Anchors should NOT be assumed to contribute towards lateral bracing/raking stability of a structure in decks or stumps in sub-structure, unless pre-approved by an Engineer.
- 8. Post must be laterally restrained at top.
- 9. Post Anchors are not intended to be used for cantilever posts and balustrades without pre-approval from an Engineer.

IMPORTANT:

READ THIS DATASHEET IN CONJUNCTION WITH PRYDA POST ANCHORS GUIDE AND REFER TO GENERAL NOTES AND LIMITATIONS FOUND ON PAGES 4 TO 7.

INSTALLATION - FIXING TO WET CONCRETE

- Orientate anchor as required, measure and mark location of anchor positioning
- · Isolated footing should be restricted to stable soil.
- i.e. Class A and S foundation classification to AS2870.
- · Ground assumed level.
- · Seek advice from your consulting project Engineer.

STEP 3

- Position your Post Anchor in the dugout and suspend at location using temporary framing.
- · Ensure post anchor is vertically plumb and level.
- Suggested clearance between underside of post to concrete slab finish surface 75mm.
- · Pour your concrete and allow to set.

STEP 5

• Drill through post using saddle holes to mark location. Ensure drill through holes are horizontally levelled and perpendicular to saddle.

STEP 2

- Dig out ground and construct formwork to required depth as specified by your consulting Engineer.
- Allowance for 150mm anchor embedment and 75mm clearance between underside of post to foundation surface.

STEP 4

STEP 6

- Place timber post upright into Post Anchor stirrup for direct bearing.
- Ensure to locate post central to support base and vertically plumb.

- Insert 2x M12 bolt through saddle and passing through timber post. A minimum of 2x thread pitch should extend beyond the outward surface of the nut.
- · Install nut and securely fasten

INSTALLATION TIPS

FOUNDATION SLOPE

- It is recommended to slope foundations away from the base of the Post Anchor all around.
- Avoid water pooling and buildup of debris around anchor base and stem.

TERMITE & BUSHFIRE MANAGEMENT

- To meet the requirements of AS 3660.1-2014, a minimum of 75mm clearance between the underside of the Post Anchor saddle and the ground surface or concrete is recommended.
- Routinely clear away debris or any obstructions at anchor base on a regular basis.

BOLT LENGTH

- When using hex head bolts for fastening your post, it is recommended to use a length 20mm longer than post side or have a minimum of 2 x thread pitch extend beyond the outward surface of the hex nut.
- Account for the thickness of the saddle and allow sufficient thread of the bolt to pass the hex nut.
- For example, a 115mm-120mm hex head bolt would suit a 90mm post anchor.

LOOKING FOR MORE DETAILS OR OTHER ANCHORS IN OUR RANGE?

SEE OUR POST ANCHOR DESIGN GUIDE AVAILABLE AT PRYDA.COM.AU

